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Chaotic dynamics and orbit stability in the parabolic oval billiard
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Chaotic properties of the one-parameter family of oval billiards with parabolic boundaries are investigated.
Classical dynamics of such billiard is mixed and depends sensitively on the value of the shape parameter.
Deviation matrices of some low period orbits are analyzed. Special attention is paid to the stability of orbits
bouncing at the singular joining points of the parabolic arcs, where the boundary curvature is discontinuous.
The existence of such orbits is connected with the segmentation of the phase space into two or more chaotic
components. The obtained results are illustrated by numerical calculations of the Poincare´ sections and com-
pared with the properties of the elliptical stadium billiards.
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I. INTRODUCTION

Billiard is a dynamical system in which a point partic
moves freely within a bounded domain, changing its dir
tion by elastic specular collisions with the billiard wall
Two-dimensional billiards, as paradigmatic examples
chaos in Hamiltonian systems, have been extensively in
tigated during past decades. Among planar billiards with
additional forces only the elliptical shape~including the
circle! is integrable@1#, whereas the rectangular billiards,
spite of the regular type of dynamics, exhibit many comp
cated properties in dependence on the side ratio@2,3#. The
same is true for a broad class of polygonal billiards that
considered pseudointegrable@4–6#. The growing interest for
billiards started when two ergodic billiards were discover
the Sinai billiard @7# and the Bunimovich stadium billiard
@8#, with the walls consisting partly of straight segments a
partly of circular arcs. Subsequent investigations have b
concentrated around the criterion of exponential diverge
and the focusing properties of the billiard arcs, with the a
to discover possible new ergodic billiards@9–11#. Contem-
porary investigations of classical billiards are mostly bas
on the fact that the planar billiards are only exceptiona
integrable or fully chaotic and that the generic case
mixed dynamics. Such billiards may have the parame
dependent boundaries with smoothly varying proper
obeying the Kolmogorov-Arnold-Moser~KAM ! theorem,
but there are also billiards with singularities in the bound
@12–22#. These are reflected in the Poincare´ diagrams as bi-
furcations with singular properties and through the segm
tation of the chaotic fraction of the phase space into two
more chaotic subdomains. In these investigations the crit
of linear stability@1# are used to reveal the dynamical pro
erties of regular and chaotic orbits. The billiards have a
been important in the semiclassical and quantum phys
since the semiclassical limit and quantal properties
greatly influenced by the complicated dynamics of the cl
sical system@23–27#.

In this paper we introduce a symmetrical billiard wi
parabolic arcs, which we call the parabolic oval billiard.
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Sec. II we describe the billiard and explain its geometri
properties. In Sec. III we analyze the stability and propert
of some selected orbits and show the Poincare´ diagrams de-
pending on the shape parameter. In Sec. IV we discuss
segmentation of the chaotic part of the phase plane and c
pare the results with the properties of the elliptical stadi
billiards. Sec. V contains the discussion and conclusions

II. DESCRIPTION OF THE PARABOLIC OVAL
BILLIARDS

The boundaries of the billiard we investigate depend
the shape parameterd, and are described in thex-y plane by
the expression

y56Fd1
d22x2

4~12d!G if 0 ,uxu<d,

y56dA12uxu
12d

if d<uxu,1, ~1!

wherexP@21,1# and 0,d,1.
The billiards~1! are shown in Fig. 1 for several values o

the shape parameterd. At the pointsP(6d,6d) where the
two arcs meet both the boundary curve and the tangent s
are continuous. The second derivative of the boundary, h
ever, is discontinuous and leads to the curvature radius:

R5
@4~12d!21x2#3/2

4~12d!2
if 0 ,uxu<d,

R5
@4~12d!~12uxu!1d2#3/2

2d~12d!
if d<uxu,1. ~2!

The horizontal diameter of the billiard has the length 2, a
the vertical diameter is 2H, with

H5
d~423d!

4~12d!
. ~3!
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For d→0 and d→1 the billiards are infinitely elongate
ovals, and ford52/3 the shape has the central symmet
The coordinates of the focal points of the parabolas are

Fy~0,6@d1g~d!#!,

Fx~6@d2g~d!#,0!, ~4!

with

g~d!5
~3d22!~22d!

4~12d!
. ~5!

For d,2/3 the billiard is oriented horizontally~the vertical
diameter is smaller than 2!, and ford.2/3 it is elongated in
the vertical direction. There exists a correspondence of
shapes when

d→ 424d

423d
. ~6!

Therefore, we show results only for the shapesd<2/3, indi-
cating where convenient the corresponding valued.2/3.

III. DYNAMICS OF THE PARTICLE IN THE PARABOLIC
OVAL BILLIARD

When the shape parameter is varied, the properties o
parabolic oval billiard drastically change. Figure 2 shows
Poincare´ sections for different shapes. As explained in@22#,
these diagrams are area conserving and are obtained by
ting the coordinatex and thex componentvx of the velocity

FIG. 1. The shape of the boundary~full line! of the parabolic
oval billiard with some periodic orbits~thin line!: ~a! d50.20, with
the vertical two-bounce orbit;~b! d50.310 102, with the ‘‘candy-
shaped’’ orbit;~c! d50.453 081 8, with the ‘‘bow-tie’’ orbit;~d! d
50.473 401 367, with the ‘‘bird’’ orbit;~e! d50.62, with the trap-
ezoidal orbit;~f! d50.666 666 7, with the four-period quadratic an
the tilted two-bounce orbits.
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of the particle at the moment when it crosses thex axis. In
Figs. 2~c!, 2~e!, and 2~g!, some singularities in the phas
plane are observed which can be traced to special peri
orbits with the singular points on the boundary as the bou
ing points.

Some typical orbits are shown in Fig. 1. The vertical d
ametral orbit is shown in Fig. 1~a!. It is stable and exists for
all valuesd,(1022A3)/1150.594 172 58. For this value
the orbit is neutral. After this value the vertical orbit disa
pears, and the tilted two-bounce orbit is born.~Equivalently,
for d.2/3, there exists a stable horizontal two-bounce or
for d.A32150.732 050 8, and for smaller values ofd
there is a stable tilted two-bounce orbit.!

Next we explore the low period periodic orbits th
bounce at the singular pointsP(6d,6d) in the boundary.
Due to the different curvature radiiRl andRr at the singular
points, the tracesuTrM u of the deviation matrix@1# have
different values, depending on the direction~left, right! of
approaching the singular pointP(d,d). The six-period
‘‘candy’’ orbit, shown in Fig. 1~b!, which appears atd
50.310 102, has the absolute value of the trace of the sta
ity matrix equal to 2 if approached from one side, a
smaller than 2 when approached from the other side.
same is true for the four-period ‘‘bow-tie’’ orbit shown i
Fig. 1~c!, appearing atd50.453 081 8. Thus, here we hav
stable/neutral orbits, able to generate elliptic islands in
Poincare´ sections. There is, however, a conspicuous asy
metry in this picture, as can be discerned from the Poinc´
sections ford50.310 102 andd50.453 081 8 shown in Figs
2~c! and 2~e!, respectively. The orbit of the ‘‘bird’’ type ap-
pearing atd50.473 401 367@Fig. 1~d!# has the traces from
both directions larger than 2, and is therefore unstable.
Poincare´ section is shown in Fig. 2~g!. Some details on thes
orbits are listed in Table I.

Figure 1~e! shows the trapezoidal orbit, which is typica
of the parabolic arcs and has been present also in the p
bolic lemon-shaped billiard@18#. Here, this orbit has the
horizontal orientation, and exists for the horizontally elo
gated parabolic oval billiards (d,2/3). These trapezoidal or
bits are neutral, and form the series of isolated points in
Poincare´ diagrams, as can be noticed in Fig. 2~j!. The limit-
ing values of the lower and upper trapeze basis arey25
7d and y156d3/@4(12d)2#. The equivalent vertically
oriented trapezoidal orbits exist ford.2/3. These orbits pas
through the focal points~4!. For the symmetrical billiard
shaped52/3 the trapezoidal orbit degenerates into the q
dratic neutral orbit@Fig. 1~f!#. For the same shape there e
ists a neutral tilted two-bounce orbit. The Poincare´ section
corresponding to this symmetrical shape is shown in F
2~k!. Figure 2~l! gives an example of the Poincare´ section for
the vertically elongated ovalsd.2/3, in this case equivalen
to the horizontal shape depicted in Fig. 2~i!.

The consequences of the singular ‘‘candy-shaped’’ o
are more closely inspected in Fig. 3. In Fig. 3~a! the enlarged
part of the Poincare´ section from Fig. 2~c! is shown. There
exists clearly the invariant curve separating the two regi
in the phase plane. The elliptic island seen on this figure
due to the six-periodN orbit shown in Fig. 3~b!. Figure 3~c!
2-2
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FIG. 2. Poincare´ sections for
the parabolic oval billiard. The
positionx andx component of the
velocity vx of the particle when
crossing thex axis are shown. The
range on both axes is@21,1#. ~a!
d50.02; ~b! d50.2; ~c! d
50.310 102 05;~d! d50.33; ~e!
d50.453 081 8;~f! d50.455; ~g!
d50.473 401;~h! d50.55; ~i! d
50.594 172 58;~j! d50.62; ~k! d
50.666 666 7;~l! d50.732 050 8.
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shows in more detail another region of the Poincare´ section
for d50.310 102. It zooms in on the point singularity corr
sponding to the six-period ‘‘candy-shaped’’ orbit seen in F
1~b!. As soon asd increases above this value, theN orbit
disappears and gives birth to stable elliptic islands co
sponding to the six ‘‘candy-shaped’’ orbit, which can be o
served in Fig. 2~d!.
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IV. SINGULAR PROPERTIES OF THE PARABOLIC OVAL
BILLIARD AND COMPARISON WITH THE

ELLIPTICAL STADIUM BILLIARD

The results presented in Sec. III reveal the important
fects of the singular boundary points on the billiard dyna
ics. The calculated Poincare´ diagrams show that for almos
TABLE I. Properties of some singular orbits in the parabolic oval billiards.

Direction Equivalent
of value

Orbit Period d<2/3 approach TrM Stability d>2/3

Tilted 2 2/3 l,r 2 Neutral 2/3
two-bounce 50.666 666 7 50.666 666 7
Quadratic 4 2/3 l,r 2 Neutral 2/3

50.666 666 7 50.666 666 7
‘‘Bird’’ 4 (2/15)(62A6) l 2.57 Unstable A(2/3)

50.473 401 367 r 4.28 Unstable 50.816 497
‘‘Bow-tie’’ 4 (622A2)/7 l 2 Neutral 2(A221)

50.453 081 8 r 1.88 Stable 50.828 427
~‘‘Hour-glass’’!

‘‘Candy’’ 6 (42A6)/5 l 20.33 Stable 2A624
50.310 102 r 2 Neutral 50.898 979
2-3
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all values ofd the phase space is divided into separate
mains which do not overlap. This is verified by numeric
calculations up to 107 bounces. For special irrational param
eter values corresponding to the orbits bouncing at the
gular points, there is a strong numerical indication that th
exist special closed invariant curves securing this separa
However, the segmentation is present also for other par
eter values. The orbits become sticky and do not leave t
areas within the phase plane.

Here it should be stressed that the billiard~1! can be con-
sidered as a special case of a larger family of billiards wh
arise when the two pairs of symmetrical arcs are appende
the vertices of the rectangle, in such a way that the tang
slope is continuous, and the curvature is discontinuous.
most familiar of such billiards is the Bunimovich stadiu
billiard @8# with straight segments connected by circular ar
The next subfamily are the oval billiards of Benettin a
Strelcyn @12#, examined also by He´non and Wisdom@14#,
who discovered in these billiards the existence of the se
rating invariant curves for some special types of singu
orbits.

Furthermore, there is the two-parameter family of ellip
cal stadium billiards that were first introduced by Donn
@10# and which were also treated in Refs.@11,28–30#. We
investigated systematically a broad shape range of this f
ily of billiards @31#. We have found that the dynamics of th
billiard is extremely rich, ranging from limiting integrabl
cases and simple mixed behavior obeying the KAM theore
through the fully ergodic billiards for certain paramet
ranges, to the mixed phase-space properties with stro
enhanced segmentation of the phase plane. In our ana
we used the parametrization of the shape of the ellipt
stadium where the boundary is described as

y56g if 0 ,uxu<d,

y56gA12S uxu2d

12d D 2

if d<uxu,1, ~7!

where xP@21,1#, 0<d<1 and 0,g,`. As stressed in
Refs.@10,11#, the possibility of ergodic behavior is present
the ratio of the two semiaxes is 1<(12d)/g,A2.

FIG. 3. Strongly magnified part of the Poincare´ section ford
50.310 102 containing the elliptical invariant point and the inva
ant curve separating the two domains;~b! the N-orbit responsible
for the elliptic point shown in~a!; ~c! strongly magnified part of the
Poincare´ section ford50.310 102 containing the point correspon
ing to the ‘‘candy-shaped’’ orbit.
03620
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Those shapes can be reduced to one-parameter famili
many different ways. For instance, forg512d one obtains
a family of Bunimovich stadium billiards. In all cases th
horizontal diameter is equal to 2.

If d5g, the straight segments and elliptic arcs meet at
vertices of a square of side 2d, the same as in the parabol
oval billiard. In Fig. 4 we compare the Poincare´ section@Fig.
4~a!# and some periodic orbits from different segments of
phase plane@Fig. 4~b!# for the parabolic oval billiard with the
corresponding Poincare´ section @Fig. 4~c!# and the orbits
@Fig. 4~d!# for the elliptical stadium billiard. In the right up
per angle of Fig. 4~d! one notices one of the orbits that we
called pantografic in Ref.@29#, and which are a generaliza
tion of the ‘‘candy-shaped’’ orbit. As is seen from Fig. 4~d!,
not only pantografic orbits, but also other types of orb
contribute significantly to the overall dynamics in the elli
tical stadium billiard.

V. DISCUSSION AND CONCLUSIONS

In summarizing the results presented in the preceding
tions, we can draw the following conclusions. The tw
dimensional parabolic oval billiard introduced in this wo
offers a new possibility for exploring the effects of the di
continuities in the curvature radius on the structure of
phase space. We have calculated analytically the devia
matrices of the main lowest periodic orbits and perform
extensive numerical calculations of the Poincare´ sections.
Our results show that for all values of the shape param
the phase plane is segmented into separated domains
complex fractal structure. Properties of the parabolic o
billiard are in some details similar to those of the elliptic
stadium billiard, but exhibit also significant differences. Th
confirms that the important modifications in the billiard d

FIG. 4. ~a! The Poincare´ section for the parabolic oval billiard
with d50.25.~b! Some typical orbits for the parabolic oval billiar
presented in~a!. ~c! The Poincare´ section for the elliptical stadium
billiard with d50.25 andg50.25. ~d! Some typical orbits for the
elliptical stadium billiard presented in~c!.
2-4
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namics are introduced when the curved boundary segm
are replaced by straight lines.

In the light of the recent interest in exploring quantal r
percussions of the classical chaos in the parameter-depen
mixed Hamiltonian systems@19,27,32,33#, the parabolic oval
billiard opens numerous possibilities for calculating the le
density fluctuations, wave functions, and localization p
nomena. The investigations in these directions are now
progress and hopefully will contribute farther to the und
03620
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standing of complicated dynamics in the mixed systems
are out of reach of the KAM theorem.
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@31# V. Lopac, I. Mrkonjić, and D. Radic´ ~unpublished!.
@32# M. Berry and M. Robnik, J. Phys. A17, 2413~1984!.
@33# J. Kole, K. Michielsen, and H.D. Raedt, Phys. Rev. E63,

016201~2000!.
2-5


